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Motivating Multicore & Manycore 
Case Study: High Performance Computing 



The Manycore Design Challenge 

• Hardware: How many cores to put onto one die? 
– How many are useful? How to connect them for scalability? 

• Software: Will anyone care? 
– Can “general purpose” programmers take advantage of the concurrency?   

• Design: How to best implement them? 
– Can we use tiled architectures to reduce costs for design & validation? 

Intel Labs “TeraScale” research 

program is addressing these 

questions with a series of 

experimental chips 

80 core research 

processor 

48 core SCC research 

processor 

VRC

2
1

.4
m

m

26.5mm

System Interface + I/O

D
D

R
3

 M
C

D
D

R
3

 M
C

D
D

R
3

 M
C

D
D

R
3

 M
C

PLL

TILE

TILE

JTAG



2
1
.7

2
m

m

12.64mm
I/O Area

I/O Area

PLL

single tile

1.5mm

2.0mm

TAP

2
1
.7

2
m

m

12.64mm
I/O Area

I/O Area

PLL

single tile

1.5mm

2.0mm

TAP

• Goals 

– Achieve 1+ TeraFLOPS @ <100 W 

– Demonstrate energy efficient architecture 

with fine-grain power management 

– Prototype high performance & scalable  

on-chip interconnect 

– Explore design methodologies for network 

on a chip architectures 

• Basic features 

– 65 nm, 100 Million transistors 

– 8x10 tiles, 275 mm2, 3mm2/tile 

– Mesochronous clock 

– 1.6 SP TFLOP @ 5 GHz and 1.2 V 

– 320 GB/s bisection bandwidth 

– Variable voltage, multiple sleep states 

80 Core TeraScale Processor by Intel Labs 

[S. Vangal et al.: An 80-Tile Sub-100-W TeraFLOPS 
Processor in 65-nm CMOS, IEEE Journal of Solid-
State Circuits, Vol. 43, No. 1, Jan 2008] 

Released 2007 



• Achievements 

 Scalable research microprocessor 

 48 IA cores   

 Processors network resembles chip-

level cloud computing 

 Fine-grained power management  

 

• Basic features 

 Tiled architecture 

 45 nm, 1.3 Billion transistors 

 6x4 tiles, 567 mm2, 18.7 mm2/tile 

 Message passing architecture 

 6 voltage domains for cores 

 

Single-chip Cloud Computer (SCC), Intel Labs 
 

Released 2010 
Sharing as software research platform with 

industry and academic collaborators 
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Dual-core SCC Tile 
Inside the SCC 

•24 Dual-core tiles (48 IA cores) 

•24 Routers 

•Mesh network with 256 GB/s 

bisection bandwidth 

•4 Integrated memory controllers 

 

• Intel Pentium® class cores  
 16K L1$ per core 

  256K L2$ per core 

•16K Message passing buffer 

 



VARIABILITY 



SCC Fmax Variation Small Compared to 80-core 

[S. Dighe et al., A 45 nm 48-core IA Processor with Variation-Aware Scheduling and Optimal Core Mapping, 

2011 Symposium on VLSI Circuits Digest of Technical Papers] 



… but SCC Fmax/Leakage Variation still Significant 
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[S. Dighe et al., A 45 nm 48-core IA Processor with Variation-Aware Scheduling and Optimal Core Mapping, 2011 Symposium on VLSI 
Circuits Digest of Technical Papers] 



SCC: Fmax vs. Voltage Variation 
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SCC Variation-Aware Application Mapping  
 

 VU: variation unaware mapping 

(baseline).   

 VA-LV:  use cores with lowest 

leakage and V domain with 

lowest V for a given F.   

 MS: mesh V/F adjusted 

dynamically to match bandwidth 

needs of the app. 

 PG: set idle cores to lowest 

Voltage  

Energy Saving 

Taking variation into 

account when mapping 

[S. Dighe et al., A 45 nm 48-core IA Processor with Variation-Aware Scheduling 
and Optimal Core Mapping, 2011 Symposium on VLSI Circuits Digest of 
Technical Papers] 



POWER MANAGEMENT 



SCC Power Management 

 On package voltage regulators 

 8 voltage islands and 24 

frequency islands 

 8-cores per voltage domain 

 2-cores per frequency domain 

 2D-mesh on a separate 

voltage/ frequency domain 

 
[S. Dighe et al., A 45 nm 48-core IA Processor with Variation-

Aware Scheduling and Optimal Core Mapping,  
2011 Symposium on VLSI Circuits Digest of Technical Papers] 



Impact of Routers and Clocks 

16 

[Howard et. al. 48 core SCC processor, ISSCC 2010] 

Cores (69%) Cores* (50%) 

Routers+mesh (10%) Routers+mesh (28%) 

Memory 

(20.7%) 

Memory 

(19%) 

Global Clocking 

(2%) 

Global Clocking 

(1.3%) 

[Dighe et. al. Lessons Learned from the 80-core 

TeraScale processor, ITJ, Vol 13, 2009] 

*Core = FMAC+Registers + on-tile-synchronous clock (35%+4% + 11%) 

80 core, TeraScale testchip 48 core, SCC testchip 

Full Power, 1.14 V and 125 W Full Power, 1.2 V and 152 W 



Application-driven Power Management on SCC 

• Fine-grain DVFS orchestrated by activities in application 

– MPI call patterns analyzed by phase predictor during runtime 

• Hierarchical coordination of DVFS requests in software 

– Individual cores request state change 

– Managers per voltage domain select next DVFS states 

• Significant energy improvements  
of 15% on average  

– for NAS Parallel Benchmarks 

– Joined work with the University  
of Edinburgh 

 

[Ioannou et al.: Phase-based Application-driven Hierarchical Power 

Management on the Single-chip Cloud Computer, PACT 2011] 



ENERGY EFFICIENCY 



Motivation for Lower Vmin 

• Today silicon operates over a constrained voltage range (typically 
1.3 V to 0.7 V) 

• Reducing Vmin can improve scaling and efficiency 

– Scaling: Compute scales to match varying workloads 

– Efficiency: Compute efficiency improves at lower voltages 

• Coming Near Threshold Voltage (NTV) 

Goal of NTV research  

Develop circuits & architectures that 

enable a wide dynamic voltage range 

while preserving peak performance 

Aurora test chip, 45 nm  CMOS, ISSCC 2009 



Prototyping a NTV Core 

20 

Increased 
delay 

variability 

Memory 
read/write 

failures 

Low static 
noise 

margins 

Flops setup/ 
hold delay 

degradation 

Failures in 
contention 

circuits 

Performance 
degradation 

Variation-
aware design 

NTV-aware 
design 

optimizations 

Modified 
Caches 

C
H

A
L

L
E

N
G

E
S

 

SOLUTIONS 



Near Threshold Voltage Core 

• IA concept chip that can tune from 
full/turbo performance to low 
power modes <10mW – wide 
dynamic range 

• First processor to demonstrate 
benefits of Near Threshold Voltage 
(NTV) circuits 

• Enables ultra low-power devices 
with wide dynamic operating range 

• 32nm SoC low leakage 
technology 

 

 

 

Capable of running off this solar cell 



NTV CPU at IDF October 2011 



Measured Power and Performance 
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[S. Jain et. al “A 280mV to 1.2V Wide Operating Range IA-32 Processor in 32nm CMOS” , ISSCC 2012] 



Measured Energy Efficiency 
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[S. Jain et. al “A 280mV to 1.2V Wide Operating Range IA-32 Processor in 32nm CMOS” , ISSCC 2012] 



MARC 
MANY-CORE APPLICATIONS 
RESEARCH COMMUNITY 
 



Software Research on our Experimental Chips 

• The 80 core chip … 5 people at Intel did the SW research 

– Focus on computational kernels 

• For SCC … Embracing the community with external 
research program 

– Applications, OS, programming systems, middleware 

• 154 contracts signed 

• 102 unique institutions 

• 50 Research partners in Europe 

• 33 Research partners in US 

• 19 Research partners in Other Countries 

• 316 MARC website participants 



MARC Community Map 
 

Source: http://communities.intel.com/community/marc 



MARC Symposia Publications 

20,5% 

11,4% 

34,1% 

34,1% 

Papers 

Performance/

Scalability

Energy Efficiency/

Themal Management

OS/Runtime Programming Models

as of Dec 2011 



Upcoming MARC Events 

• TACC-Intel Highly Parallel Computing Symposium, April 
10th – 11th 2012, Austin, USA 

• MARC China Symposium, May 17th, Wuxi, China 

• MARC Symposium July 19th - 20th 2012 , Toulouse, 
France 

 

 http://communities.intel.com/community/marc 

 



CASE STUDIES 
Emerging Multicore / Manycore 



Case Study: Multicore in Automotive 
ECU Consolidation 

• Multitude of different 
ECU systems (OS, 
architecture, nework) 

VM1 VM2 

VM3 VM4 

VM5 VM6 

Hypervisor 

Shared Multi-core 
Hardware  

• Consolidate compute functions 

• Many VMs on one shared multi-

core processor 

 

Today Near term 

ECU: Embedded Control Unit 



ECU Consolidation: 
A First Closer Look 

New Requirements: 
• Realtime 

• Unsecure content 

• Growing applications performance 

• Heterogeneous 

 

Linux*/RTOS

Trusted VM
Unreliable

User Apps VM

Secure Boot

VM

Linux*

Trusted

SW stack

(e.g. HMI, 

Radio 

Navigation)

Android OS

Vehicle I/O

Multi-core/Multi-threaded IA Platform

Hypervisor

Video Player

Travel Guide

Games

RTOS

RTOS

VM
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A new World of Software 

New applications paradigms for mobile / embedded software 

• “Apps” are it!  

• Apps have shorter lifetimes than programs today 

• Implies smaller budgets for development 

• Requires productive programming abstractions 
 

Mobile platforms evolve fast 

• Quicker transition to multicore (staring at ~1GHz) 

• Energy efficiency becomes even more important 

Efficient parallel programming systems even more 
important for mobile / embedded environments 



 
Case Study: Dynamic Web Delivered Content 

River Trail 

• Unlocks parallel hardware to HTML/JavaScript* applications 

– Multi-core, SSE/AVX 

• Gently extends JavaScript with data-parallel constructs 

– Preserves safety and security of existing web development model 

– Interoperates with HTML5 and WebGL 

• Leverages existing low-level software layers  

– Compiles JavaScript kernels to OpenCL* 

• Targets application domains with abundant data parallelism 

– 3D gaming, physics simulations, photo and video editing, 
augmented reality 

 

 



River Trail Status 

• Research prototype implemented as 
Firefox extension 

• Development moved to open source 
in September, 2011 

– github.com/rivertrail/rivertrail/wiki 

– Announced at IDF October 2011 

• More than 3000 downloads and 300 
followers since then 

 

 

 IDF particle demo 

Physics simulation in Firefox 

15x speedup 
 
 

 



Summary 

• On-die variations are real  

• Application-level power management feasible and 
promising 

• Research indicates significant increase in energy efficiency 
by NTV structures 

• Parallel programming systems and OS research continues 
to be more relevant than ever 

• Rising performance requirements of applications in 
mobile/embedded increasing need for parallel computing 




