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Case Study: High Performance Computing 



The Manycore Design Challenge 

ÅHardware: How many cores to put onto one die? 
ðHow many are useful? How to connect them for scalability? 

ÅSoftware: Will anyone care? 
ðCan ògeneral purposeó programmers take advantage of the concurrency?   

ÅDesign: How to best implement them? 
ðCan we use tiled architectures to reduce costs for design & validation? 

Intel Labs òTeraScaleó research 

program is addressing these 

questions with a series of 

experimental chips 

80 core research 

processor 

48 core SCC research 

processor 

VRC

2
1

.4
m

m

26.5mm

System Interface + I/O

D
D

R
3

 M
C

D
D

R
3

 M
C

D
D

R
3

 M
C

D
D

R
3

 M
C

PLL

TILE

TILE

JTAG



2
1
.7

2
m

m

12.64mm
I/O Area

I/O Area

PLL

single tile

1.5mm

2.0mm

TAP

2
1
.7

2
m

m

12.64mm
I/O Area

I/O Area

PLL

single tile

1.5mm

2.0mm

TAP

ÅGoals 

ïAchieve 1+ TeraFLOPS @ <100 W 

ïDemonstrate energy efficient architecture 

with fine -grain power management 

ïPrototype high performance & scalable  

on-chip interconnect 

ïExplore design methodologies for network 

on a chip architectures 

ÅBasic features 

ï65 nm, 100 Million transistors 

ï8x10 tiles, 275 mm2, 3mm2/tile  

ïMesochronous clock 

ï1.6 SP TFLOP @ 5 GHz and 1.2 V 

ï320 GB/s bisection bandwidth 

ïVariable voltage, multiple sleep states 

80 Core TeraScale Processor by Intel Labs 

[S. Vangal et al.: An 80-Tile Sub-100-W TeraFLOPS 
Processor in 65-nm CMOS, IEEE Journal of Solid-
State Circuits, Vol. 43, No. 1, Jan 2008]  

Released 2007 



Å Achievements 

-Scalable research microprocessor 

-48 IA cores   

-Processors network resembles chip-

level cloud computing 

-Fine-grained power management  

 

Å Basic features 

-Tiled architecture 

-45 nm, 1.3 Billion transistors 

-6x4 tiles, 567 mm2, 18.7 mm2/tile  

-Message passing architecture 

-6 voltage domains for cores 

 

Single-chip Cloud Computer (SCC), Intel Labs 
 

Released 2010 
Sharing as software research platform with 

industry and academic collaborators  
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Dual-core SCC Tile 
Inside the SCC 

Å24 Dual-core tiles (48 IA cores) 

Å24 Routers 

ÅMesh network with 256 GB/s 

bisection bandwidth 

Å4 Integrated memory controllers 

 

ÅIntel Pentium® class cores  
-16K L1$ per core 

-  256K L2$ per core 

Å16K Message passing buffer 

 



VARIABILITY 



SCC Fmax Variation Small Compared to 80-core 

[S. Dighe et al., A 45 nm 48-core IA Processor with Variation-Aware Scheduling and Optimal Core Mapping, 

2011 Symposium on VLSI Circuits Digest of Technical Papers] 



é but SCC Fmax/Leakage Variation still Significant  
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[S. Dighe et al., A 45 nm 48-core IA Processor with Variation-Aware Scheduling and Optimal Core Mapping, 2011 Symposium on VLSI 
Circuits Digest of Technical Papers] 



SCC: Fmax vs. Voltage Variation  
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SCC Variation-Aware Application Mapping  
 

ÁVU: variation unaware mapping 

(baseline).   

ÁVA-LV:  use cores with lowest 

leakage and V domain with 

lowest V for a given F.   

ÁMS: mesh V/F adjusted 

dynamically to match bandwidth 

needs of the app. 

ÁPG: set idle cores to lowest 

Voltage  

Energy Saving 

Taking variation into 

account when mapping 

[S. Dighe et al., A 45 nm 48-core IA Processor with Variation-Aware Scheduling 
and Optimal Core Mapping, 2011 Symposium on VLSI Circuits Digest of 
Technical Papers] 



POWER MANAGEMENT 



SCC Power Management 

ÁOn package voltage regulators 

Á8 voltage islands and 24 

frequency islands 

Á8-cores per voltage domain 

Á2-cores per frequency domain 

Á2D-mesh on a separate 

voltage/ frequency domain 

 
[S. Dighe et al., A 45 nm 48-core IA Processor with Variation-

Aware Scheduling and Optimal Core Mapping,  
2011 Symposium on VLSI Circuits Digest of Technical Papers] 



Impact of Routers and Clocks 

16 

[Howard et. al. 48 core SCC processor, ISSCC 2010] 

Cores (69%) Cores* (50%) 

Routers+mesh (10%) Routers+mesh (28%) 

Memory 

(20.7%) 

Memory 

(19%) 

Global Clocking 

(2%) 

Global Clocking 

(1.3%) 

[Dighe et. al. Lessons Learned from the 80-core 

TeraScale processor, ITJ, Vol 13, 2009]  

*Core = FMAC+Registers + on-tile-synchronous clock (35%+4% + 11%) 

80 core, TeraScale testchip 48 core, SCC testchip 

Full Power, 1.14 V and 125 W Full Power, 1.2 V and 152 W 



Application -driven Power Management on SCC 

ÅFine-grain DVFS orchestrated by activities in application 

ðMPI call patterns analyzed by phase predictor during runtime 

ÅHierarchical coordination of DVFS requests in software 

ðIndividual cores request state change 

ðManagers per voltage domain select next DVFS states 

ÅSignificant energy improvements  
of 15% on average  

ðfor NAS Parallel Benchmarks 

ðJoined work with the University  
of Edinburgh 

 

[Ioannou et al.: Phase-based Application-driven Hierarchical Power 

Management on the Single-chip Cloud Computer, PACT 2011] 



ENERGY EFFICIENCY 



Motivation for Lower Vmin 

ÅToday silicon operates over a constrained voltage range (typically 
1.3 V to 0.7 V) 

ÅReducing Vmin can improve scaling and efficiency 

ðScaling: Compute scales to match varying workloads 

ðEfficiency: Compute efficiency improves at lower voltages 

ÅComing Near Threshold Voltage (NTV) 

Goal of NTV research  

Develop circuits & architectures that 

enable a wide dynamic voltage range 

while preserving peak performance 

Aurora test chip, 45 nm  CMOS, ISSCC 2009 


